Cryomodule design changes for ICD-2

Arkadiy Klebaner

Outline

Fermilab

- TESLA & ICD-2
- ICD-2 Cryomodule Design Questions
- Heat Rejection
- Pressure Drop
- Shields
- Conclusion

TESLA and ICD-2

		TESLA	ICD-2
Duty factor	[%]	1	100
E _{acc}	[MV/m]	23.4	18
\mathbf{Q}_0	[-]	1.0E+10	2.2E+10
Operating Temp	[K]	2.0	1.8
Beam Current	[μΑ]	9	1
Dynamic Load	[W/cavity]	< 1	~22
Cryo Unit Length	[m]	~ 2,500	~ 150

- Can current helium vessel design and associated piping accommodate high heat load requirements of the ICD-2?
- What is an impact of shorter Cryo string on thermal shields and associated pipe sizes?

· ... ?

Heat Rejection

- Compared to TESLA, ICD-2 dynamic heat load has increased by a factor of ~ 30
- Heat rejection must be by superfluid conduction $(T < T_{sat})$. Boiling will cause microphonics

Must not exceed peak heat flux

Pressure Drop

- Increased flow rate due to higher heat load affects "Chimney", 2 phase pipe and Helium Gas Return Pipe (GRP)
- "Chimney" diameter affects thermal conductivity path. "Chimney" diameter needs to be increased
- 2 phase pipe needs to be increased to maintain stratified smooth flow regime
- GRP was sized for 2.5 km TESLA strings and appears to be OK for the ICD-2 layout

Shields

Fermilab

- 5/8 K and 40/80K shields function as
 - Thermal radiation shield
 - Thermal intercept for supports, input coupler, HOM coupler, HOM absorber, leads, etc.
- 5/8 K shield intercepts ~ 2 W of thermal radiation heat load per module that otherwise would be absorbed by 2 K circuit. For the ICD-2, total heat load per module is ~ 180 W
- Short Cryo Unit size relaxes shield operating temperature and pressure requirements. It also opens opportunity to reduce shield pipe sizes

Conclusion

- ICD -2 operating parameters warrant review and modification of the CM's 2 K circuit
- Potential modifications include but not limited to increase of the helium vessel, the "chimney" and the 2 phase pipe
- Economic benefits of the 5K thermal radiation shield need to be evaluated
- Shields operating temperature, pressure and associated pipe sizes should be optimized within ICD-2 operational and safety constraints